
where the interelectrode distance is greatest. In turn the layer of deposits can result in compensation of the initial 

nonuniformity. Therefore the EF system can have a stationary nonuniform structure in the form of regions with 
different concentration of the fluidized microparticles in the interelectrode space. In the general case the dynamics of 
the development of the nonuniformity in the EF system, taking into account both the transverse and longitudinal 
instability, requires a special analysis in which the nonstationary diffusion equation is solved. However, based on the 
estimate made, namely, of the transverse instability of the EF system at high concentrations it is possible to explain 
the formation of nonuniform regions and the existence of jet flows, which were noted in [2], under conditions of 
electrodynamic fluidization of fine powders. 

NOTATION 

Here r is the radius of a microparticle; p is the density of a microparticle; E is the electric field strength; qM is 

the maximum charge of a microparticle; # = 4~rP is the scattering cross section; m is the mass of a microparticle; g is 
the acceleration of gravity; n is the concentration; d is the intereleetrode distance; and, s is the resistance of the 
medium per unit velocity of a microparticle. 
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FLUIDIZATION OF MICROPARTICLES IN ELECTRIC FIELD 

S. I. Zhebelev UDC 621.319 

The results of  statistical modeling of the electrodynamic fluidization of microparticles in an electric 
field are outlined. The dependence of  the current density and charge distribution function of the 
microparticles on the microparticle concentration is discussed. The limiting attainable microparticle 
concentration in the interelectrode space is considered. The dependence of the concentration of  fluidized 
microparticles on their bulk concentration is considered. 

Electrodynamic fluidization (EDF) of conducting powders, in which microparticles of the material move in a 
sufficiently strong electric field, is currently of interest as a method of fluidizing disperse materials with the aim of 
intensifying technological processes. On account of recharging at the electrodes, the particles perform oscillations in 
the interelectrode space. 

In the experimental investigation of this process, it is established, in particular, that there is some limiting 
concentration of microparticles involved in fluidization. This limiting concentration depends on the size of the 
microparticles, but does not depend on the magnitude of the electric field [1]. The current density of the EDF system 
tends to saturation with increase in microparticle concentration. 

In [2], the existence of a limiting concentration was explained by the influence of gravitational forces, which 
lead to asymmetry of the particle distribution in the interelectrode space limiting the EDF-particle concentration. This 
mechanism applies for large particles (radius r = 100-500-10 -6 m). 

In [3], the existence of a recombination mechanism limiting the EDF-particle concentration as a result of 
microparticle collisions was noted. However, only a few estimates were made. 

S. M. Kirov Ural Polytechnic Institute, Sverdlovsk. Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 60, 
No. 1, pp. 64-72, January, 1991. Original article submitted December 27, 1989. 
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Fig. 1. Dependence of  the current density J,  A.m -2, and the relative 

number of  interparticle collisions NM/No, rel. units, on the 
microparticle concentration n, m -3. 
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Fig. 2. Charge distribution function of microparticles obtained for a 
microparticle concentration of  1.109 (1), 1.10 TM (2), and 1.10 TM (3) 
m-3.  

In the present work, the possibility of  statistical modeling of  the motion of  the microparticle system in 

electrodynamic fluidization in an electric field is considered, taking account of interparticle collisions; EDF is 

analyzed for small microparticles, in conditions where taking gravitational forces into account cannot lead to limitation 
of the f luidized-micropart icle concentration. 

Below, it is assumed that the system of  EDF microparticles consists of identical spherical particles (radius r) 
with a density p. With gas filling of the interelectrode space, the resistance of  the medium to microparticle motion is 

determined by solving the Navier--Stokes equation. In a motionless medium at small Reynolds numbers, the equation 
of microparticle motion takes the form [4] 

mV' = Fe q- Fz + Fe -t- Fn , (l) 

where m = 4~3trap is the particle mass; F E = qE is the force acting on a particle of  charge q in an electric field E; 

F~--mg is the gravitational force; = --6x~rV = --sV is the drag force of  the medium for  a microparticle of velocity V; 
F n is the term due to nonsteady motion of  the microparticle. Confining attention to the case where the microparticle 
motion between collisions occurs at constant velocity, it follows from Eq. (1) when V' = 0 that 

V - -  q E + m g  

This means that rp/r  << 1, where rp = m / s  is the time constant of  the particle; r is the mean free-f l ight  time. 

The maximum microparticle charge acquired at the electrode is determined by its radius [5] 

(2) 

q~ ~ 2/3~3eosr2s (3) 
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Fig. 3. Dependence of the potential energy Eo, J.m -s, and the current density J, A.m "2, on the 
concentration of fluidized microparticles for r = 2 .10  -6 m ,  U = 2 .10  4 V ,  d = 10 -2 m.  

Fig. 4. Dependence of the chemical potential of the solid ~s and liquid #~o phase of the EDF system on 
the microparticle concentration n, m-a; #, J. 
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Fig. 5. Dependence of the concentration of fluidized microparticles no, 

m -a, and concentration of microparticles deposited at the electrode n s, 

m -a, on the bulk concentration nb, m "a. 

In the general case, the state of the microparticle is characterized by spatial coordinate x, velocity V, and 
charge q. 

Considering a microparticle as an element of a statistical ensemble, it is assumed that the distribution function 
/(x, V, q) determines the statistical properties of the EDF system, i.e., f(x, V, q ) d x d V d q  is the probability of finding 
the microparticle in the states x, x + dx, V, V + dV, and q, q + dq. According to Eq. (2), the phase variables V and q 
are uniquely related; therefore, f(x, V, q) = f(x, q) in this approximation. In addition, an equiprobable charge- 
independent microparticle distribution in the volume of the EDF system is assumed. Then f(x, q) -- f(x)f(q) = f (q ) /d ,  

where d is the interelectrode distance. Thus, taking account of all the given assumptions, the statistical properties of 
the EDF system are determined solely by the charge distribution of the microparticles. It is obvious that, at a small 
microparticle concentration, when collisions between them may be neglected, only particles with charge q = +-qM exist. 
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Taking account of the normalization f f(q)dq= t ,  it is simple to show that 
,--g,M 

f ( q ) = ~  1 - - s i g n q  6(lql--q~), 
(4) 

which reflects the slower upward motion of the microparticles. It is assumed that the upper electrode is positively 
charged. For microparticles of micronic size, mg/qME ~- 10 -9, and hence the distribution of positively and negatively 
charged microparticles is in fact equiprobable. With increase in microparticle concentration as a result of collisions, 

microparticles with any intermediate charge may appear. 
The current density of the EDF system is determined by the motion of the whole set of particles 

J = X qiV~Ani' (5) 

where An i is the quantity of particles with charge qi and velocity V i. Using Eq. (2) and converting to integration, it is 

found that 

+1 , q 1o 
(6) 

where n is the EDF particle concentration; f(q/qM) is the normalized charge distribution function of the 
microparticles. Substituting Eq. (4) into Eq. (6) gives an expression for the current density of EDF particles with low 

concentration 

J -  s 1 - - ~ )  j .  (7) 

When mg/qME << 1, the well-known expression of [1] is obtained. 
The distribution function is calculated using the Monte Carlo method, i.e., the method of statistical modeling 

of the microparticle motion under the action of the electric field between two plane horizontal electrodes, The 
particle-scattering cross section in mutual collisions is assumed to be fl = 4rr 2. The basis of applicability of this 
expression was established in [4] in considering the coagulation of differently charged particles in an electric field, and 
also in [1, 3]. The intensity of the scattering flux for a particle of charge qi colliding with a particle of charge qj is 

A~j  = [5 [V~ + Vii An:., 

Anj = n[ (qlq~) A (qjq~). (8) 

Correspondingly, the total flux intensity is 

q~i = [sn ~ IVi + vii f (qjlq~) A (q/q~,). (9) 
i 

After collision, the new particle charge is equal to the mean charge of the colliding particles: qq = (qi + qj)/2. It is 
obvious that the form of the distribution function f(q/qM) is determined by the scattering intensity, which, in turn, 
depends on this function. Thus, the problem of determining f(q/qM) is significantly nonlinear. Therefore, for the 
given microparticle concentration, the form of the distribution function is determined using an iterative procedure in 
which Eq. (4) is taken as the initial approximation for f(q/qM). In each iteration, the distribution function is 
calculated from the formula 

h 
fh (qdq~O = At~ I Z At i' (10) 

i 
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where Atik is the time that the microparticle is in the ith charge state. The convergence of the iterative procedure is 

monitored by calculating the norm 

hh _-= ; [[~ (q/q;,) _ [~_.~ (q/q~,)lZ d (q/q~). 
--1 (11) 

Modelling the EDF system shows that h k decreases sufficiently rapidly with increase in the number of 

iterations. The results of  modeling an EDF system of  microparticles (r = 2.10 -6 m) in the air medium of a plane 

capacitor with an interelectrode distance of  10 -2 m on an EC-1060 computer  are shown in Figs. 1 and 2. In each 

iteration, ~ 104 interparticle collisions are taken into account. The number of  iterations for a specified accuracy of 5%: 

is no more than 20. 
The dependence of the current  density of  the EDF system on the microparticle concentration n is shown in Fig. 

1. At a low concentration, J is directly proportional to n and is described by Eq. (7). With further  increase in 

concentration, the current density reaches saturation and there is a maximum at some critical concentration ner. A 

numerical experiment gives net = 8.1012 m ~3 for r = 2.10 -6 m. This behavior of  the current density may be explained 

on analyzing the dependence of the charge distribution function of the microparticles on the concentration (Fig. 2). At 

a low concentration, the form of  f (q /qM)  corresponds to Eq. (4) with two peaks at q = +qM. With increase in 

concentration, particles with zero and fractional charge appear and, at a concentration corresponding to the current 

maximum, the EDF system consists basically of  weakly charged and neutral particles. Thus, within the framework of 
the given model, the saturation of  the current  density with increase in concentration is due to particle collisions with 

the formation of  a weakly charged EDF system. The ratio of the number of interparticle collisions N M to the total 

number of particle collisions N O with one another and with the electrodes N e (N O = N M + N e) is shown as a function of 

the concentration in Fig. 1. The ratio NM/N o increases sharply on approaching the critical concentration nor at which 

the current density is a maximum. At n > net, there are basically only interparticle collisions; the microparticles do not 

undergo charge reversal at the electrodes and hence the current through the EDF system ceases. Thus, an engineering 

estimate of net requires the consideration of the ratio between the free path length of  the microparticle and the 

interelectrode distance. It is evident f rom Eq. (8) that the estimate of  the f ree-f l ight  time of the microparticle is r = 
l/(~hlT'), where h is the concentration of  scattering particles; 17" is their relative velocity. At a microparticle 

concentration corresponding to the onset of  current-densi ty  saturation, it may be assumed that h = n/2 and I 7" = 2VqM 

= V(qM). Then the free path length of  the microparticle is 

l = xVq. = i/([~n). (12) 

Assuming that l = d, it follows that nou = 1/(fld), the concentration of  onset of  current-densi ty  saturation, is found. On 
the other hand, at a concentration corresponding to the cessation of  current  through the EDF system, a microparticle 

leaving the electrode basically encounters neutral microparticles, losing half of  its charge in each collision. The 
microparticle begins to fall downward, as the force acting on it f rom the electric field becomes less than the 

gravitational force: qE < mg. After  M collisions, the microparticle charge will be qM/2 M and correspondingly M = 

ln(qME/mg)/ ln  2 when qME/2M = rag. For this case, h = n and l ~ = VqM. From the condition MI = d, an estimate of the 

limiting microparticle concentration at which the current  through the EDF system ceases is obtained 

nli  = n o ,  in ( q~E 1 / l n 2 .  (13) 
\ mg 11 

Thus, the critical concentration of  the EDF system is limited on both sides: nos < nor < nti. For r = 2.10 -~ m, E = 2.10 6 
V/m, p = 7.8-10 s kg/m 3, it is found that nos = 2-1012 m -s and n t i=  2-10 is m -s, these values completely correspond 

to the results of modeling. 
Numerical experiments with various electric fields show that net does not depend on E. This agrees with the 

experimental data in [1 ], and is not surprising, since the free path length of  the microparticle does not depend on the 
velocity nor correspondingly on the electric field. When mg/qME << 1, the dependence of M on E is weak; therefore, 

n~i may also be regarded as independent of E. 
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In the statistical modeling of the EDF system, rp/r is also monitored. Whereas for  particles of  radius 2.10 -e 

m this ratio is no more than 0.2 and it may be assumed that the required condition rp/r << 1 holds with sufficient 

accuracy, the inverse relation rJr > 1 holds for  r -~ {5-10).10 -~ m. Nevertheless, taking into account that the free 

path length is independent of  the microparticle velocity, it may be assumed that the qualitative behavior of  the current 

density as a function of  the concentration is also retained for larger microparticles. However,  the numerical 

experiments conducted have still not answered the question: what is the limiting attainable microparticle concentration 

in EDF? In [3], it was assumed that the limiting attainable concentration in the recombinational mechanism is 

determined by a single microparticle collision in some elementary volume of  the EDF system. It is assumed that the 

onset of formation of  a deposit layer at the electrodes corresponds to the collision of two different ly  charged particles 

in elementary volumes with square or hexagonal bases. In fact, the concentration of onset of  current-densi ty  saturation 

is taken as the limiting attainable concentration. This estimate is based only on some physical considerations regarding 

the character of the recombinational mechanism, i.e., without considering the conditions in which a layer of  material 

may exist at the electrode surface, as well as a region of fluidized microparticles. 

To elucidate the conditions of existence of the EDF-system components, the EDF particles and the layer of 
material at the electrode surface are regarded as two different  phases of a single EDF system. In this case, the phase- 

equilibrium condition [6] requires equality of  their chemical potentials. If  E s and E o are the energies of the solid and 

liquid phases in unit volume of  interelectrode space and n s and n o are the volume concentrations of  these phases, the 

equilibrium condition is written in the form 

P'S = ~o, (14) 

where #s = OEs/Ons is the chemical potential of  the solid phase (layer of  material at the electrode); #o = OEo/gno is 

the chemical potential of the liquid fluid phase (EDF particles). Analysis of  this equation entails finding E s and E o. In 

calculating the energy of  the EDF particles, note, first of all, that, taking account of  the above constraints, the energy 

of kinetic motion of the microparticles is completely converted into the heat of the gas filling of  the interelectrode 

space and hence only the potential part of  the EDF-part icle  energy need be taken into account in E o. The potential 

energy of  a single microparticle of  charge qi and spatial coordinate x i along the direction of the electric field is 

Ez=mgxz--q~EI~d 2 ( 1 - - s i g n q z ) - - x ~ ] .  
(15) 

Averaging the microparticle energy over the ensemble of EDF particles, it is found for unit volume that 

-~q~ d 

--qM 
(16) 

Using the obvious equality q sign q = Iql and integrating with respect to the spatial coordinate, it is found, 

taking account of  the relation f(x) = 1/d, that 

I w :   w)l --! (17) 

At a low microparticle concentration, when collisions between the microparticles may be neglected, the distribution 

function is determined by Eq. (4). Substituting Eq. (4) into Eq. (17) gives the obvious equality 

q~iEd qMU 
Eo = no -- no 

2 2 (18) 

In this case, the energy of  the EDF particles is proportional to their concentration. With increase in the microparticle 
concentration, the form of  the distribution function changes. Interparticle collisions lead to decrease in the charge of 

the EDF particles and consequently to relative decrease in their energy. The dependence of  the EDF-part icle  energy 
on the concentration calculated for particles with r -- 2-10 -6 m f rom Eq. (17) using statistical modeling data is shown 
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in Fig. 3. It  is evident  that the energy of  the liquid phase of  the EDF system has a max imum at the concentration net 

at which a max imum of  the current  density is also observed. Comparison of Eqs. (6) and (17) for  J and Eo shows that, 

when mg/qME << 1, the concentration dependence of  these quantities is determined solely by the fo rm of the charge 

distribution function of  the microparticles. At low concentration, the chemical potential of  the liquid phase of the 

EDF system is #o = OEo/Ono = qMU/2 and does not depend on the concentration. With increase in the concentration, 

microparticle collisions lead to decrease in the energy growth in comparison with Eq. (18). The beginning of this 

section is defined by the concentration no,. With fur ther  increase in concentration, the chemical potential of  the liquid 

phase decreases, passing through zero at n = nor and becoming negative (Fig. 4). 
In calculating the energy of the EDF-sys tem solid phase, it is taken into account that only the upper  particles 

of  the layer with a surface concentration of the order of  "I, = l(2r) 2 and a volume concentration n, = %/d. The 

potential energy of the solid phase per  unit  volume of  intereleetrode space is this 

E s :  - l~sq~ U ~: 7s q.,~U. (19) 
�9 d 

Increase in the number  of  particles deposited at the electrode does not lead to increase in energy of  the layer as a 

whole. Therefore ,  when n s > n,, /~s = OEs/ans --" O. In the case of  a low concentration of particles deposited at the 

electrode, when their surface concentration is less than the monolayer  concentration ~/s < %, the energy of  the solid 

phase is E s = ('~s/d)qMU and correspondingly #s = aEs/ans = qM U. Thus, the chemical potential of  the solid phase is 

constant when n s < n,, and sharply decreases to zero when n s > n, (Fig. 4). On the basis of  the equal chemical 

potentials of  the liquid and solid phases of  the EDF system in the equil ibrium state, the dependence of n o and n s on 

the bulk concentration of microparticles n b = n o + n s is determined.  The condition/~o --/~s corresponds to simultaneous 

intersection of a straight line parallel to the concentration axis with the curves of  #o(no) and #s(ns). At a low 

microparticle concentration,  when n b < n s and #s > #o, the existence of  both phases simultaneously is impossible. With 

a minimum of the total energy, the energy of  the EDF system consists solely of  l iquid-phase particles, i.e., n o = n b. 

In the range n, < n b < 2n,, solid phase appears; the concentration of  fluidized particles remains constant (n o = 

ns), while the number  of  particles deposited on the electrode increases (n s =! n b - -  ns). With fur ther  increase inbulk  

concentration, the state of  the solid phase is stabilized, and its concentration remains constant: n s = n s. At the same 

time, the concentration of fluidized particles increases in direct proport ion to the bulk concentration up to the value 

n O -- net. Further  increase in the quanti ty of  microparticles introduced in the interelectrode space, i.e., increase in the 

bulk concentration, does not change the quantity of  fluidized particles, but leads only to increase in the number  of 

particles deposited at the electrode. Thus,  the limiting attainable concentration in the EDF system is the concentration 

tier at which the current  density and energy of  the EDF particles are a maximum. This conclusion is confirmed by 

experimental  results [1] indicting saturation of  the current  density with increase in the bulk concentration of 

microparticles. 
This analysis assumed identical microparticles with a uni form layer of  solid phase of  the EDF system. In real 

conditions, however ,  there are factors ( inhomogeneity of  the field, the presence of  boundaries,  etc.) leading, as a rule, 

to an inhomogeneous distribution of  the particles deposited on the electrode surface. In this case the energy of the 

solid phase of  the EDF system may not be constant with increase in the number  of  particles deposited at the electrode, 

and hence the jump in the chemical potential at n s = n s may not be so sharp. As a consequence, the increase in 

concentration of fluidized microparticles is slower. Thus, the curves of  ns(n b) and no(rib) in Fig. 5 only describe their 

asymptotic behavior in the absence of  inhomogeneity in the EDF system. Nevertheless,  it may be concluded that, with 

increase in bulk concentration, the concentration of  the liquid phase (concentration of fluidized microparticles) tends, 

in any case, to a critical value no greater  than its value at any nb. 
The microparticle layer deposited at the electrode appears when n b = n,. For r = 2.10 -8 m, n, = 6.25-1012 m -3 

and t i c r -  8"1012 m-s are of  the same order. Therefore ,  it is unsurprising that estimates of  the limiting attainable 

concentration of  fluidized microparticles are usually associated with the monolayer concentration n s. Note that the 

relation between n s and ncr does not depend on the particle size or the electric field. Thus,  the given process of  solid- 

layer formation and the corresponding estimate of  the limiting attainable EDF-par t ic le  concentration may be regarded 
as valid also for  larger particles (of the order of  ~10 - s m  and above),  for  which the constraints adopted earlier do not 

hold. 
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NOTATION 

Here r is the microparticle radius; p, microparticle density; V, velocity; F~, force due to electric field; q, 

charge; E, electric field strength; g, acceleration due to gravity; Fg, gravitational force; m, microparticle mass; F c, drag 
force of medium; r/, viscosity of medium; Fn, nonsteady term in equation of motion; s, drag force of medium per unit 
velocity; rp, time constant of particle; r, time of free flight; qM, maximum charge; e, %, dielectric permittivity; x, 
coordinate; f, distribution function; d, interelectrode distance; sign, sign function; 5, delta function; n, concentration; 
�9 , intensity of scattering flux; 8, scattering cross section; t, time; h, norm; N M, number of interparticle collisions; N e, 
number of collisions with electrodes; N o, total number of collision; n, scatterer concentration; V, relative velocity; l, 
free path length;/~o,s, chemical potential; Co,s, potential energy; U, potential difference; J, current density; 7, surface 
concentration. 
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PULSATIONAL CHARACTERISTICS OF THE MODEL OF MASS FLOW 

IN A FLOW-THROUGH REACTOR 

M. I. II'in UDC 66.023,001.57 

Liquid f low  in a f low-through reactor and one-dimensional longitudinal turbulent mass transfer i s  

considered. The turbulent mass f l ux  is described by a second-order di f ferential  equation including the 

velocity and spatial scale o f  the turbulent pulsations. Conditions o f  pulsed tracer introduction in the  

reactor are considered, and the inverse problem for experimental determination o f  the pulsational 

characteristics is solved by the moment method. 

In [1, 2], an inhomogeneous differential equation was obtained for the isotropic one-dimensional turbulent or 
molecular mass (heat) transfer 

12 02q [2 02q 2l Oq OC 
. . . .  q = ul ~ (1) Ox 2 u z O~ z u Ox Ox ' 

which includes the spatial scale l and velocity u of the pulsations. 

The model in Eq. (1) differs from those in [3, 4] in that the spatial scale and second derivative of the flux with 
respect to the coordinate are individually present. This permits the formulation of a boundary problem for the flux q 
which more correctly reflects the physical picture at the boundaries (walls) of the reactor. The steady (quasi-steady at 
large u) model 
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